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A Monte Carlo technique is proposed for the simulation of statistical properties 
of many-arm star polymers on lattices. In this vectorizing algorithm, the length 
of each arm l is increased by one, step by step, from a starting configuration 
with l =  1 or l =  2 which is generated directly. This procedure is carried out for 
a large sample (e.g., 100,000 configurations). As an application, we have studied 
self-avoiding stars on the square lattice with arm lengths up to /max = 125 and 
up to f = 20 arms, both in the bulk and in the geometry where the center of the 
star is adsorbed on a repulsive surface. The total number of configurations, 
which behaves as JV" ~ l TM ~/jz, where # = 2.6386 is the usual effective coordina- 
tion number for self-avoiding walks on the square lattice, is analyzed, and the 
resulting exponents 79 = 7(f) and ,/s(f) for the bulk and surface geometries are 
found to be compatible with predictions of Duplantier and Saleur based on 
conformal invariance methods. We also obtain distribution functions for the 
monomer density and the distance of the end of an arm from its center. The 
results are consistent with a scaling theory developed by us. 

KEY WORDS: Monte Carlo simulation; polymer; star polymer; polymer 
network; self-avoiding walk; two dimensions; critical exponent; surface adsorp- 
tion; radial distribution function; total number of configurations. 

1. I N T R O D U C T I O N  

T h e  s t a t i s t i c a l  p r o p e r t y  of  s t a r  p o l y m e r s  in  d i lu t e  s o l u t i o n  of  a g o o d  

s o l v e n t  h a v e  b e e n  f i n d i n g  i n c r e a s i n g  a t t e n t i o n  r ecen t ly :  s i m u l a t i o n s ,  (1 3) 

e x t r a p o l a t i o n  o f  e x a c t  e n u m e r a t i o n s ,  (4 7) s t a l i n g  theo r i e s ,  <8 17) a n d  r e n o r -  

r e a l i z a t i o n  g r o u p  a n a l y s e s  (1~ 21) h a v e  b e e n  app l i ed .  P r o p e r t i e s  of  s t a r  
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polymers with a large number f>> 1 of arms is not only an interesting 
theoretical issue, but of practical interest, since polymers with such an 
"architecture" have in fact been synthesized (22) and the theoretical concepts 
possibly apply also to structures such as micelles. (23) 

The static properties of star polymers that have been mainly con- 
sidered are the total number of configurations Y and various structural 
characteristics. For  a polymer network of some general topology 
consisting of f flexible linear chains having all the same length l, 
behaves as 

A/~t~ l ~ -  lp ~q (1.1) 

where for a lattice model p describes an "effective coordination number" 
for the self-avoiding-walk (SAW) problem: e.g., # = 2.6386 on the square 
lattice.(4 7) The associated exponent 7~, however, depends on the topologi- 
cal structure of the polymer network. (1~ In particular, for a st~r polymer 
in the bulk this exponent 7~ = 7( f )  depends on the number of arms, while 
different exponents y ( f )  result if the center of the star is adsorbed on a 
wall (7'16) or if one arm end [ y l ( f ) l  or two ends [711(f)] are adsorbed at 
the wall (7'16) (Fig. 1). 

Structural quantities of interest are the mean square distance between 
the end (E) of an arm and the center (C) (cf. Fig. 2) 

endpoints 
i = l  

and the corresponding distribution function g(rCE), as well as the mean 
square radius of gyration 

Rgy r=  ~ j~. (rj-- (1.3) 

and the mean square distance from the center 

Rc = ( r j -  rC) 2 (1.4) 
J 

and the radial density distribution function g(r) around the center of the 
star. In Eqs. (1.2) (1.4), N = f l  is the total number of monomers which are 
at positions {rj} in a considered configuration, ( - . - )  means an average 
over all configurations, and r c, r ca, and r~ denote the positions of the star 
center point, its center of gravity, and the end of the ith arm, respectively. 
Equations (1.2)-(1.4) all refer to a star polymer in the bulk (Fig. la ) - - for  
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star polymers in surface-adsorbed geometries (Figs. lb, lc) the directions 
parallel and perpendicular to such a repulsive wall are not equivalent, of 
course, and then certain generalizations of Eqs. (1.2)-(1.4) are appropriate, 
as will be discussed in the next section. 

Now both enumeration techniques (4-7) and the renormalization group 
expansion in e = 4 -  d (1~ 21) are very difficult to apply for large f.' exact 
enumerations only work if JV is not too large and thus for large f the 
accessible arm lengths l get too small for a meaningful extrapolation to 

(a) 

(b) 

(c) 

J 
J 
i" 
7 

.I 

.I 

y. 
I "  
/ "  

J 

J 

J 
J 
I 
I 
J 

S 

J 

Fig. 1. Three topologies of a 4-arm star: (a) the free star in solution in the bulk, (b) the 
center-adsorbed star, and (c) the star with two arm ends being adsorbed. 
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l--* oo; in the 8-expansion, the expansion parameter is efrather than e itself, 
and hence for f ~  oo additional approximations are required/21) Thus it is 
very desirable to study such problems by computer simulation. While the 
molecular dynamics technique is capable of dealing with many-arm star 
polymers, ~1'2~ it does not yield information on the number of configurations 
and hence it cannot estimate exponents such as 7(f),  7s(f), 71(f), 7H(f) ,  

, ~ ' - ~ ' / /  ~ r i  E 

b) 

" c) 
_z__ ~'=(~,,z) 

Fig. 2. Notat ion of distances in (a) a star polymer and (b) a linear polymer in the bulk and 
(c) with one or two ends adsorbed at the surface. Each arm has l monomers  (labeled by an 
index j, at a position rj). The radial distance of a monomer  from the star center is denoted 
by r. The end-to-end distance of a linear polymer is denoted by R. In the surface-adsorbed 
geometry, distances perpendicular to the wall (z) and parallel to it (rli) need to be dis- 
tinguished. 
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etc. While this problem in principle should be accessible by biased 
sampling methods, (3) biased sampling always involves subtle accuracy 
problems. (24) 

Thus in the present paper we propose a new Monte Carlo method for 
the simulation of many-arm star polymers utilizing a completely stochastic 
(unbiased) sampling (Section 3). As an application, we study star polymers 
with arm lengths up to l =  125 and number of arms up to f =  20 on the 
square lattice, generating typically 60,000 samples with a vectorizing algo- 
rithm on various supercomputers. In Section4, the resulting properties 
of free stars in the bulk are described and compared to the results by 
Duplantier, (1~ which were obtained by conformal invariance methods and 
hence are believed to be exact, and thus provide a crucial test for our 
methods. In Section 5, results for center-adsorbed star polymers at surfaces 
are presented, and compared to the corresponding (presumably exact) 
results of Duplantier and Saleur. (11) Section 6 contains our conclusions and 
outlook for future work. 

2. A S U R V E Y  OF P E R T I N E N T  T H E O R E T I C A L  P R E C I C T I O N S  

From the renormalization group expansion in e = 4 -  d, the following 
structure for the exponents 7(f), ?s(f) has emerged(16): 

7 ( f ) = 1  + ( 7 _ 1  ) I f  f ( f - 1 ) ] 2  

+f( f - -  1 ) ( f -  2) A(f) 

7s(f) = 1 + (71 - -  1 ) f -  (71~ + v) f ( f -  1) 
2 

+f( f - -  1 ) ( f -  2) B(f) 

(2.1) 

(2.2) 

Here A(f) and B(f) are polynomials of both e and f and are of order e2; 
A(f) has been f o u n d  (16'21) as  e2/64 + C(e3). The exponents 7, 71, 711, and 
v characterize linear polymers in the bulk and at a surface, respectively: the 
mean square end-to-end distance behaves as 

( R 2 ) ~ l  2v (2.3) 

where v = 3/4 for d =  2, (25) and the number of configurations is 

JV ~ l ~ - Iyt (2.4) 

~ l ~ - ~/fl (2.5) 
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and 

~111 ~ 1711 !#l (2.6) 

for free chains (Fig. 2b) and chains adsorbed with one end (Jf~) or both 
ends (Jf~l) at the wall (Fig. 2c), respectively. (26~ 

As f increases, 7 ( f )  has been conjectured to behave as <21~ 7 ( f ) ~  
_fa/(a 1( For d = 3 dimensions, the accuracy of the expansion to order e 2 
in Eq. (2.1) is only good for small f,  as a comparison to the presumably 
more accurate Monte Carlo data (3) shows. For  d =  2 dimensions, on the 
other hand, it is believed that the following formulas are exact (~~ 

7( f )  = i-6 + ~ f 2 

7s( f )=l+(71_l ) f_ (y11+v) f ( f -1  ) 15 9 2 ~ - l + - ~ f - ~ f  (2.8) 

and also the exponents 7, 71,711 are believed to be known exactly (25'27~ in 
d = 2 ,  7 =43/32, 71 =61/64, and 71~ = 3/16. It is interesting to note that 
Eq. (2.8) has the form of Eq. (2.2) with B(f) = 0, while Eq. (2.7) is not con- 
sistent with Eq. (2.1). The reason for this latter discrepancy is still unclear, 

Now the exponents 711...1(f) for star polymers with f arms out of 
which g are adsorbed with their ends on the surface are given in terms of 
the simple scaling relation ~ 

711..-l(f) = 7(f )  + v + g[71~ - 71] (2.9) 

Next we consider the quantities R C E  , R g y r ,  and Rc characterizing the 
structure of the polymer [Eqs. (1.2)-(1.4)]. Now the scaling theories (8 16) 
imply that 

R C ~ R g y  r ~ R C E  ~ l v (2.10) 

Any f dependence can show up only in the prefactor in these relations 
which should scale proportional to f(1 v)/(a-1)(8) Equation (2.10) also 
holds if the center and/or some arm ends are adsorbed at the surface. <16) 
However, considerably more interesting are the various radial distribution 
functions. A recent scaling theory predicts for the monomer density 
function (17) 

l(r) 
(2.11) 
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and for the center-end distribution function 

1 (rCE~ 
g(rCE) = R~--~E r \ RczJ  (2.12) 

Here the short-distance behavior of these scaling functions 0(x) and r 
has been obtained as (I8) 

~(x) ~ 1 (2.13) 

()(x) ,,~ x ~ (2.14) 

where the exponent O(f) is given by (17) 

O(f) = [7 - 7 ( f +  1) + 7(f)  - 1 ]/v (2.15) 

In the case of the center-adsorbed star, these functions depend on the 
parallel distance r H and the perpendicular distance from the wall (z) 
separately (17) 

p,(rll, z) = N(Rc)-d  0,//__,__rll z '] (2.16) 
\Rc Rc/ 

g ,rCE ( z ) ,t II , zE)= (RcE)-dCs (2.17) 
\ROE' 

The short-distance behavior of these quantities has been predicted as (17) 

ps(rll, 0) ~ r l l  d +  2 ( f )  (2.18) 

p,(O, z ) ~ z  d+l/v (2.19) 

g ' r  CE 0 )=  (r~E) Otl(f) (2.20) 
s t  rl ' 

gs(O, z E) = (zE) ~177 (2.21) 

where the exponents 2(f) ,  Oil(f), and Ol( f )  have been derived as 
follows(17): 

2(1)=0,  2 ( f ) = l / v  for f - - . oo  (2.22) 

Oil(f) = [71 - G ( f +  1) + G( f )  - 1]/v (2.23) 

O• = [7 -- 7s(f + 1) + G( f )  -- 1 ]/v (2.24) 

3. M O N T E  CARLO A L G O R I T H M  

While "dynamic" algorithms such as the bond fluctuation method (28) 
would be suitable to obtain structural properties [such as considered in 
Eqs. (1.2)-(1.4), (2.10)-(2.21)], they cannot yield estimates for the number 

822/64/3.4-20 
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of configurations and associated exponents 7~ [Eqs. (1.1), (2.1)-(2.9)3. 
While the latter quantities could in principle be obtained from standard 
simple sampling, (29) a straightforward application of this technique for 
many-arm star polymers would fail due to the well-known "attrition 
problem"<29): the success rate of growing an f-arm star of arm length l 
decreases exponentially as (/~/3)~q~(1.137) -u,  on the square lattice. 
However, this problem can be overcome by a simple modification of the 
simple random sampling. Suppose we have a sample of Me configurations 
of an f-arm star polymer with given l (l is the length of each arm), and 
want to utilize this sample for making one-step larger star polymers, i.e., 
stars with the arm-length l + 1. On a square lattice, there are three ways of 
elongating one end of an arm by one unit, if we discard the fourth direction 
where the arm would fold backward on itself, which is forbidden for self- 
avoiding polymers. Thus, in growing an f-arm star polymer, there would be 
3 s ways of elongating the ends of the f arms by one unit (some of which 
also would have to be discarded because of the self-avoidance condition). 
Thus, if we would want to consider all possible realizations at the (I+ 1)th 
step from M e distinct realizations at t h e / t h  step, we would have to make 
3fM~ trials and discard all unphysical realizations which violate the self- 
avoidance condition. Of course, this number 3fMt would be prohibitively 
large for large values of f. However, it is not necessary to consider all 
possible 3fMt trial configurations: it is enough to consider a stochastically 
chosen sample mM t of them, where m ~ 3Sfor l a rger  The size of this sam- 
ple must be chosen so large that the number Mt+l of the configurations 
which are accepted out of the mMt trial configurations, i.e., those which do 
not violate the self-avoidance condition, are of the same order of Me+!, 
since now the process can be iterated: Mt~Mt+l ~Mt+~ ~. . . ,  starting 
out for l =  3, say, since configurations for l =  1 and l =  2 usually can be 
generated differently (e.g., from exact enumeration). Since the expected 
number M't+ 1 of accepted configurations out of the full number of trial 
configurations 3fMz is 

M)+I ~+1 _/~f (3.1) 
Me 

and since the actual number of trial configurations made is mM~ instead of 
3fM~, we can also conclude 

Ml Ml 3 s -  m (3.2) 

We see that the condition M~+I/MI~I is satisfied if we choose m ~  
(3//1)s~ (1.137) s. Even for f as large as f =  20, a rather small value of m 
(~13)  results. In practice for small l it is better to work with somewhat 
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larger  values of m; in any case, this type of "enr ichment  a lgor i thm"  for s tar  
po lymers  is prac t ica l ly  appl icable .  

F r o m  Eqs. (1.1), (3.1), and  (3.2) we see that  the precise value of the 
ra t io  Mr+ 1/M t yields the desired in format ion  on the exponent  7~, since 

- raM1 - # y  1+- - - -~+(9  (3.3 

f= t, f= 6, typeI f= 6,type II 

f~=12 

f = 7, surfn ce-adsorbed 

f=20 

f= t~,surface -adsorbed 
- ~, surface-adsorbed 

Fig. 3. Core regions of the star polymers simulated in the present paper. Each black dot is 
the center point of a single arm which is grown starting from this point. While for the number 
of arms f =  4, 8, 12, 16, and 20 the core is always a regular diamond shape, for other values 
of f  less regular shapes result, and one can consider several types of shapes for the same value 
off, as indicated far f =  6. 
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Consequently, the configuration number exponent 7(f)  [or y,(f) ,  respec- 
tively] is determined from a plot of 3fM~+I/(mMI) versus 1/l: if the 
numerical data Nll on a straight line with the (known) intersection #f  on 
the ordinate axis, the slope of this straight line yields l y e -  1 ] ~ (  

At this point, we make a comment about the center of the star 

2 2  
( a )  2 2  1 1 1  

22 1 1 
22 iiii 1 
2 iii ii 
2 222 1 ii 

22 222 22 1 Iiii 
2 222222222 1 Iiii ii 

22 22 2 ii iiii 
2222 2 1 1 
22 2 ii 

2 1 
2111 

33 211 
3333333 221 
3 3 33 221 

33 33333 33 2 1 
3 33333@11 
33 4@66 
3 44445 666 
3 444444 5 66 
3 44444 55 6666 66 

333333 4 555 6 66 666666 
333 44 5 6 6666 66 
3333 444 55 66666 6 6 6 
333 44 444 5 6666 6 6 
33 444444 44 555 666 6 

444 5 6666 
444 55 
4444 555 

4 5 
4 55 

44 5 55 
44 5 55 

555555 
55 
555 
55 
55 
555 
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Fig. 4. Typical configurations of a (a) type II 6-arm star and (b) a center-adsorbed 4-arm 
star. The symbols @ denote the sites in the inner part of the core region (denoted by open 
circles in Fig. 3), while the positions of the monomers  of each arm are indicated by printing 
the label i of each arm at the corresponding position. Both cases rear  to l = 50. 
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Fig. 4. (Continued) 

polymer. If one requires the center to be a lattice point, obviously f~< q, 
where q is the coordination number of the lattice ( q = 4  here). Being 
interested in larger fvalues ,  more extended core regions in the center of the 
star must be admitted. The choice of the precise size and slope of this core 
region involves some inevitable ambiguity. Figure 3 shows the core regions 
of star polymers used in the actual simulations. In order to avoid too dense 
configurations near the center of the star (which might give rise to a rather 
slow approach to the limiting behavior considered here), we choose 
relatively large cores such that already for l =  1 a large number of con- 
figurations exists. On the other hand, it is clear that for observation of truly 
asymptotic behavior it may be necessary that the relevant distances which 
are considered are much larger than the linear dimensions of the star core. 
Obviously, this region is not at all easy to reach for large f The present 
paper thus does not really aim at deriving very precise exponent estimates, 
but rather intends to demonstrate the feasibility of the approach and test 
its strengths as well as its weaknesses. Therefore we have confined ourselves 
also to a relatively modest investment of computer time: Choosing 
Ml=2000  for 2~</~<9, Mr=20,000 for 10~<l~19, and Mr=60,000 for 
20~< l~< 50, the program for f = 4 ,  8, 12, 16, and 20 took altogether about 
10 hours in CPU time on a NEC SX-2 supercomputer to estimate 7(f) ,  
reaching a vectorization percentage of 97.8 %. For  a study of the distribu- 
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tion functions g(r cE) and p(r) and for the study of surface-adsorbed 
polymers additional runs were performed (using up to Mr=  150,000 and ! 
u p  t o  /max = 125 on a Siemens-Fujitsu VP100 computer, using altogether 
about 10 hours in CPU time). As an example of the "raw data" thus 
generated, Fig. 4 shows "snapshot pictures" of a "type II" 6-arm star in the 
bulk, and a f = 4 surface-adsorbed star. 

4. N U M E R I C A L  RESULTS FOR FREE STARS IN THE BULK 

If we make a direct plot of ~/~t+ 1/~/[est imated from recording the set 
{Mz} and using Eq. (3.3)-I versus 1/l, for various values of f separately, in 
order to estimate 7( f )  (typically Fig. 5 shows such a curve for f =  12), we 
generally find that the curvature on the plot vs. 1/l is the stronger the larger 
f, and this observation clearly suggests that the asymptotic region has not 
been reached in a naive sense. The increased size of the core, Fig. 3, which 
is a region "blocked" for the arms, systematically reduces the number of 
configurations for short arm length; such an effect is not unexpected, This 
means there is a correction to scaling to the leading asymptotic behavior 
in Eq. (1.1). Another, rather trivial effect results from the problem that for 
large f the absolute value of the exponent 7 ~ - 1 = 7 ( f ) - 1  in Eq. (1.1) 

150 
f=12 

I, t12 ~ 

10.0 

xlO ~ 

0 

' ~ " O ' b "  ~ O 

I I  
Q O I O 

I ~  = I I I  I I I I I 

1/50 1/30 1/20 

111 

Q 

1110 

Fig. 5. Plot of ~/i/Jl~t_l versus) 1/l for 12-arm stars ( f= 12). Arrow on the ordinate shows 
#f while the broken straight line is a tentative fit to the data. Here t4 lma x with tin. X = 90. 
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2 
f=4  
y(z,)=05 

= I O I I 

1/500 1/200 1/140 1/100 

l l ( f l )  
(a) 

X W 

1/'8o 
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2 

f =8  
'y (8)=- z..125 

o 11100o 1/~oo 1/~oo 1/2;~o 1/1&o 

l / ( f l )  

(b) 

Fig. 6. Plot of (,/fftt/jVt_~)llJ versus 1/l for (a) 4-arm stars, (b) 8-arm stars, (c) 12-arm stars, 
(d) 16-arm stars, and (e)20-arm stars. Arrow on the ordinate shows #=2.6386, while the 
straight line is the best fit to the data. Note that l ~< lmax with lm,, = 125 (for f = 4, 8), lmax = 90 
(for f =  12), and /m,x = 50 (for f =  16, 20). 
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Fig. 6. (Continued) 
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2 

f = 2 0  
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I i I I I i 

1/1000 1/600 1//.,,00 1/300 

l / ( f l )  

(e) 

Fig. 6. (Continued) 

is so large. Assuming there were no correction terms to Eq. (1.1), the 
binomial expansion taken one order higher than Eq. (3.3) yields 

N t + l = # f { l + ~ - ~  - - ~ 4 N /  [~ -1 ] [7~-23+2 /2  -..} (4.1) 

which shows that the quadratic correction in Eq. (3.3) is negligible only for 
l ~ [ 7 ( f ) -  21/2; such an asymptotic regime has not been reached clearly for 
large f This problem can be reduced by rather considering a plot of 
(~/;+ 1 / ~ )  1If versus lift, since now 

--~-t J = #  2(fl) 2 + ..-} (4.2) 

i.e., the quadratic correction is negligible for l>> [ y ( f ) - 1 - f [ / ( 2 f ) ,  which 
is always reached with our data. Replotting our data according to Eq. (4.2) 
removes most of all curvature, showing that corrections to scaling are now 
relatively small. Figure 6 shows the plot of (~/~/Jgj~ 1) 1If versus l i f t  for 
f =  4, 8, 12, 16, and 20. The asymptotic value/1 = 2.6386 is shown on the 
ordinate and the slope of the resulting "best fit" straight lines gives our 
estimates of # [ y ( f ) - 1 ] .  A phenomenological recipe to remove the rest 
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Table I. Comparison of Our Best Estimates for v ( f )  and v , ( f )  
w i t h  the Corresponding Exact Results (2 .7)  and (2 .8)  

f ;,(./') estimated y(f )  exact 

4 1~.5 • 0.1 1/2 =0.5 
8 ; I  • - 7 3 / 1 6 =  --4.5625 

12 ~ ~ 1 --113/8= --14.125 
16 . 4 --451/16 = --28.1875 
20 - 4  ~, ~ -374/8 = -46.75 

f y,(f)  estimated y,(f)  exact 

3 -0 .8  • - 5 3 / 6 4 =  0.828 
7 --10 • 1 -713/64 = -11.141 

11 --28 • 4 - 1949/64 = -30.453 

-,4" 

O3 

Z 

l 

0 . 1 -  

I I I 

0.01 L , i 
1 10 

f 

~ I l l f  

100 

Fig. 7. Log-log plot of R/N 3/4 for l = 50 plotted vs. f, where R is the center-end distance Rcr 
(upper set of data points) and the mean distance from the center R c (lower set). Straight lines 
indicate the Daoud-Cotton prediction, R/N 3/4 ~fl /2.  
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(a) ] / (b) 
slope=l.25S • . ~ /  

1o .3 ~ / ,  o O ; ~  f=4 
/x  ~ ? ~ x% 

" o= 
10 ": t / / /  slope=127 oa 

r/~ ~ 1  -50 • o ~ 
J slope =131 

E .... lO 1 �89 ~ & 'o I 3o ~o 

rCE 

10 -3 

10 J' 

10 -5 

Islo f : 8 

Mo s,o ~ 

1=304050 ~ 
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Fig. 8. Log-log plot of the end-center distribution function g(r CE) vs. r CE for ( a ) f = 4  stars 
and ( b ) f = 8  stars, g(r cE) is normalized as Y~ ,g ( r )= f ,  and data shown are for l = 3 0  
(crosses), l = 4 0  (circles) and l =  50 (triangles), respectively. The arrows in the abscissa show 
the respective estimates of Rcz.  Straight lines indicate the behavior g(r cE) ~ (rCE) ~176 The 
effective exponents oerf(f) are quoted in Table II. All these data were based on 90,000 samples. 

curvature on this extrapolation plot is to plot ( ~ / ~ / ~  1) y versus 1/l, where 
for each f the appropriate exponent y is adjusted to yield the best straight 
line fit. However, the strong statistical scatter of our data hardly warrants 
such a procedure. Table I quotes our best estimates obtained from these 
fitting procedures, together with Duplantier's exact result. For all the 

Table II. Comparison of the Effective Exponents Observed for 1=50 in the 
Monte Carlo Simulation for the Center-End Distribution Function wi th  the 

Corresponding Exact Results Using Eqs. (2.7),  (2.8), (2.15), (2.20) 

f Oee(f) O(f) = (2 + 9f)/24 

4 1.3 19/12 = 1.583 
8 2.2 37/12 = 3.083 

12 3.3 55/12 =4.583 
16 4.5 73/12 = 6.083 

f O~(f) Oil(f) = 3f/4 

3 1.9 9/4 = 2.25 
7 3.9 21/4 = 5.25 

f O~ff(f) O• = (25 + 36f)/48 

3 1.7 133/48 = 2.771 
7 3.8 277/48 = 5.771 
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values of f the agreement is satisfactory within the error of estimates, 
although for f~> 12 the accuracy of the present simulation clearly is too 
limited to be able to obtain significant exponent estimates. 

In spite of these limitations, our data do allow a significant study of 
linear dimensions such as Rc and RcE [Eqs. (1.2), (1.4)]. Figure 7 checks 
the Daoud-Cot ton  scaling by plotting R c / N  ~ and R c E / N  v vs. f,  to check 
the predicted (s) variation as f~  v, where a =  ( 1 -  v ) / ( d - 1 ) =  1/4 in d = 2 .  
The data are in good agreement with this prediction. 

Next we consider the center-end distribution function. Figure 8 shows 
typical data for (a)4-arm stars and (b)8-arm stars. It is seen that these 
data are in fact consistent with a power-law description for rCE< RCE as 
assumed in Eq. (2.14). However, one has to be careful: the slope of the 
straight line systematically increases with increasing arm length l, which 
indicates that one sees an effective exponent O~ and not the true 
asymptotic exponent O(f)  given by Eq. (2.15). Table II, which collects all 

(b) I 
EXACT~ 

(a) 

2 

EXACT~ 

" - "  1 

E) 

co 

(3) 

, , , ,  o , , ,  
~  1/6o 1 3o 1 /o  o 1/5o 1/3o 1 /o  

1/I 1/! 

Fig. 9. Extrapolation of oeff(f) vs. 1/l for (a) 4-arm stars and (b) 8-arm stars. Arrow shows 
the predicted exact result which follows from the scaling relation, Eq. (2.15), and Duplantier's 
formula, (1~ Eq. (2.7). 
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such data (including the surface-adsorbed case), shows that these effective 
exponents (for arm length l=  50) are systematically too low, in particular 
for large f. For obtaining the true asymptotic exponents O(f), Oeg(f) must 
be extrapolated as a function of 1/l toward l ~  oo (Fig. 9). It is seen that 
this extrapolated value becomes relatively closer to the exact result, but a 
very precise estimation of O(f) is not possible by such methods. This is a 
warning against too hasty a conclusion in d=  3 dimensions, where no 
guidance by exact results will be available! 

Finally, we turn to the monomer density distribution function p(r). As 
an example, Fig. 10 presents the log-log plots for both types of 6-arm stars 
included in Fig. 3. The slope of the straight line indicates our estimation of 
effective exponents: -0.57 for type I (see Fig. 10a) and -0.51 for type II 
(see Fig. 10b). Only for type II are the data straightforwardly consistent 
with the correct exponent 1~v-d= -2/3 [Eq. (2.11)], while for larger f 
the exponent found in the simulation is closer to about -0.6. However, 
there is also some systematic distinction between the two topologies in 
Fig. 9, and thus it is clear that the asymptotic regime where the true 
exponent can be read off has not quite been reached. 
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Fig. 10. Log-log plot of the monomer  density distribution p(r) vs. r, for both topologies, 
(a) type I and (b) type II, of 6-arm stars. The normalization is chosen such that p(r) = 1 if the 
site r is occupied. Results for three values of 1 are plotted in the same figure: l = 30 (crosses), 
l =  40 (circles), and l = 50 (triangles). The arrows in the abscissa show the respective estimates 
of R c. The slope of the straight line is given by - 0 . 5 7  for type I and -0 .51  for type II. Both 
these sets of data  should be compared to the exact value 1/v- d =  -2 /3 .  
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Fig. 11. Plot of (~/~/i1_l)  1/f versus 1/fl for the center-adsorbed (a)3-arm,  (b)7-arm, and 
(c) l l - a r m  star polymers, i.e., for f = 3 ,  7, and 11. Arrow on the ordinate shows #=2.6386,  
while the straight line is the best fit to the data. The arm lengths are rather short,/~< ]max with 
/ma ~ = 50, but  data seem already in the scaling regime. 
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Fig. 11. (Continued) 

5. N U M E R I C A L  RESULTS FOR S U R F A C E - A D S O R B E D  
STAR P O L Y M E R S  

Figure 11 shows a plot of (~/ / /~/ /_  1) 1/f versus 1/fl for f =  3, 7, and 11. 
The asymptotic value # = 2.6386 is shown on the ordinate and the slope of 
the resulting "best fit" straight lines gives our estimates of # [ 7 ( f ) - 1 ] .  
Table I quotes our best estimates obtained from these fitting procedures, 
together with Duplantier's exact results. For all the values o f f  the agree- 
ment is satisfactory within the error of estimates, although for f =  11 the 
accuracy of the present simulation clearly is too limited to be able to 
obtain significant exponent estimates. 

Also in this center-adsorbed case, we examine linear dimensions Rc 
and RCE [Eqs. (1.2), (1.4)]. According to the cone picture, (21) or a simple 
generalization of the Daoud-Cotton theory, (8/ these variables for the 
center-adsorbed stars should have the same behavior as the free stars. 
Figure 12 plots R c / N  v and RcE/N ~ vs. f,  to check the expected variation as 
f~  ~, where o-= ( 1 -  v ) / ( d - 1 ) =  1/4 in d =  2. The data are in good agree- 
ment with this expectation. 

Next we consider the center-end distribution function g(r~ E, ZE). 
Figure 13 shows typical data for (a) 3-arm stars and (b) 7-arm stars. It is 
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seen that these data are in fact consistent with a power-law description for 
rCE< RcE as assumed in Eqs. (2.20) and (2.21). However, the slope of the 
straight line systematically increases with increasing arm length l, which 

0 e~tr~ oe~ff(f) and not the true indicates that one sees effective exponents It , J -  
asymptotic exponents 011(f ), O L(f) given by Eqs.(2.23) and (2.24). 
Table II  collects all such data. Again, for obtaining the true asymptotic 
exponents O(f), 0eff(f) must be extrapolated, for example, as a function of 
1/l toward l--* oo. It  is seen that this extrapolated value becomes closer to 
the exact result, but a very precise estimation of O(f) is not possible by 
such methods. 

Finally we turn to the monomer  density distribution function P(rll , z). 
As an example, Fig. 14 presents a result for the 4-arm center-adsorbed stars 
included in Fig. 3. The slope of the straight line indicates our estimation of 
effective exponents: a = - 1 . 4 _ + 0 . 3  for p(rll,O)~r~t and b = - 0 . 6 2 + _ 0 . 0 5  
for p(O, z ) ~ z  b. For  the exponent 2 ( f )  defined in Eq. (2.18) we have 2(4) = 
a + b = 0.7 + 0.3, although the error of estimates is still quite large l-this 

Z 

127 0.1 

i i i t -  
J 
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0.01 ,I I I I t,t  

1 10 100 

f 
Fig. 12. Log-log plot of R/N 3/4 for l= 50 plotted vs. f in the case of center-adsorbed stars, 
where R is the center-end distance RCE, I I ~ RCE,• (upper set of data points) and the mean 
distance from the center Rc, ll = Rc, • (lower set). Straight lines indicate the theoretical slope, 
R/N3/4 ~ f l /Z .  
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Fig. 13. Log-log plot of the center-end distribution functions. The plots of g(rTE , 0) VS. rlc, E 
(left figure) and g(0, z cE) vs. z cE (right figure) are given, respectively, for (a) 3-arm stars and 
(b) 7-arm stars. Note that zCE=z E in the text. g(r cE) is normalized as Z ,  g(r)=f ,  and data 
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Fig. 14. Log-log plot of the monomer density distribution for the center-adsorbed star 
polymers with f =  4: (a)the plots of p(rll , 0) vs. rll , (b)the plots of p(0, z) vs. z. The nor- 
malization is chosen such that p(r) = 1 if the site r is occupied. Data shown include various 
arm lengths l, i.e., l= 30 (crosses), l=40 (circles), and l= 50 (triangles). The arrows in the 
abscissa show the respective estimates of Re, H ~ Re, • The slope of the straight line indicates 
estimation of effective exponents: a=-1 .4+0 .3  for P(rll, 0)~r~ and b=-0.62__0.05 for 
p(O,z)~z  b. The exponent b is straightforwardly consistent with the correct exponent 
1Iv - d = - 2 / 3 .  

value of the exponent  2 ( f )  should be compared  with the result of our  
= 4 - d expansion analysis(3~ while the exponent  b is straightforwardly 

consistent with the correct exponent  1 I v -  d =  - 2 / 3  [Eq. (2.19)] within the 
error of estimates. 

6. C O N C L U D I N G  R E M A R K S  

In  this paper, we have studied the statistical properties of many-a rm 
star polymers in good  solvents and two-dimensional  geometry,  both  in the 
bulk and with the center of the star being adsorbed on a flat (one-dimen- 
sional) surface. Model ing the arms of the star as self- and mutually-  
avoiding walks of l steps on the square lattice (with /~<lmax=125), 
extended cores in the center of the star as shown in Fig. 3 are used in order  
to be able to treat f - a r m  stars with f up to fmax = 20. 

Standard  Monte  Carlo methods  for the simulation of  self-avoiding 
walks ( o r  mutual ly-avoiding walks (31)) cannot  be applied to such star 
polymers without  problems. Therefore a variant of a simple sampling 
method  is suggested in this paper  and successfully applied. This new 
method  is related in spirit to the "enrichment techniques" well known (32) 
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for linear polymers. While in standard simple sampling the success rate of 
growing our f-arm star of arm length l decreases exponentially as (#/3) p 
where/~ = 2.6386 on the square lattice, in our modified method we do not 
try to add a bond at each arm end of the star once to go from l to I+  1, 
but rather we try this m times independently, from all the Mt configura- 
tions kept in the /th "generation." Choosing m ~ (3/#)f= 1.137, one can 
(for large f )  easily avoid both an "explosive growth" in the number MI of 
the configurations as I increases and an exponential decay toward zero. 

This technique is practically useful both for estimating the configura- 
tion number exponents 7(f)  and 7,(f)  for the bulk and surface-adsorbed 
star polymers, respectively, as well as for the study of center-end distribu- 
tion functions, radial density distribution functions around the center of the 
star, etc. 

We have tested our method by comparing the resulting exponent 
estimates with presumably exact results due to Duplantier and Saleur. Our 
estimates for both 7(f)  and 7~(f) are consistent with these results, but it 
must be said that at present only a rough accuracy is reached (relative 
accuracy typically is between 10% and 20% only). Thus our work rather 
is a feasibility study (and in fact has consumed only a very modest effort 
of supercomputer time). Unfortunately, a reliable estimation of the 
exponents O(f), 01t(f ), and O~(f)  characterizing the center-end distribu- 
tion of bulk and surface-adsorbed star polymers seems more difficult: 
distances rcE much smaller than the radius RcE and much larger than the 
core diameter are needed, which require distinctly larger l than have been 

0efft f~ accessible. But the general trend of the "effective exponents" Oefr(f), It w l ,  
and o~ff(f) observed in our simulations is similar to our previous scaling 
predictions. 

Nevertheless, it seems interesting to try the present method also for 
three-dimensional star polymers and for cases where other interaction 
parameters are included (e.g., attractive interactions between monomers or 
between monomers and the wall, in the center-adsorbed case). It is planned 
to report on such applications in future work. 
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